Journal of Organometallic Chemistry, 411 (1991) 325-330 Elsevier Sequoia S.A., Lausanne JOM 21821

$[(Me_3Sn^{IV})_4Fe^{II}(CN)_6 \cdot 4H_2O]_{\infty}$: Ein zinnorganisches "Berlinerblau-Analogon" mit strukturbestimmenden O-H · · · N-Wasserstoffbrückenbindungen *

Ulrich Behrens, Abdul K. Brimah und R. Dieter Fischer *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, W-2000 Hamburg 13 (Deutschland)

(Eingegangen den 4. März 1991)

Abstract

The lattice of the new organometallic coordination polymer: $[(Me_3Sn)_4Fe(CN)_6 \cdot 4H_2O]_{\infty}$ is built up of nonlinear $\{ Fe \subset C \equiv N - Sn - N \equiv C \}_{\infty}$ and $\{H_2O \cdots H_2O \supset Sn - N \equiv C \supset Fe \subset C \equiv N - Sn - OH_2 \}$ $\cdots OH_2 \}$ chains $(O \cdots O: 2.628(11) \text{ Å})$ which are interlinked by the coordinated and "zeolitic" H_2O molecules, respectively, via six (comparatively weak) $O-H \cdots N$ hydrogen bonds $(O \cdots N: 2.972(8) \text{ and} 3.052(8) \text{ Å})$. Orthorhombic single-crystal, space group *Cmca*, *a* 17.064(2), *b* 18.534(2), *c* 11.586(1) Å; R = 0.054 ($R_w = 0.059$).

Zusammenfassung

Das Gitter des neuen metallorganischen Koordinationspolymers: $[(Me_3Sn)_4Fe(CN)_6\cdot 4H_2O]_{\infty}$ ist aus nichtlinearen { $Fe = C \equiv N - Sn - N \equiv C$ } und { $H_2O \cdots H_2O - Sn - N \equiv C - Fe = C \equiv N - Sn - OH_2$ $\cdots OH_2$ }-Ketten (O $\cdots O$: 2.628(11) Å) aufgebaut, die durch die koordinierten bzw. "zeolithischen" H_2O -Moleküle über sechs (vergleichsweise schwache) $O - H \cdots N$ Wasserstoffbrückenbindungen (O $\cdots N$: 2.972(8) und 3.052(8) Å) vernetzt sind. Orthorhombischer Einkristall, Raumgruppe *Cmca, a* 17.064(2), *b* 18.534(2), *c* 11.586(1) Å; R = 0.054 ($R_w = 0.059$).

Einleitung

Charakteristisch für "reales" Berlinerblau, $[Fe^{III}_{4}{Fe^{II}(CN)_{6}}_{3} \cdot xH_{2}O]_{\infty}$ (1: x = 14-16 [1]) sowie für zahlreiche verwandte Koordinationspolymere [2] ist (a) die Überzahl der freien Lewis-aciden Koordinationsstellen auf den Fe^{III}-Ionen über die Gesamtzahl der Lewis-basischen Cyanid-N-Atome; volle koordinative Absättigung kommt daher (b) erst nach zusätzlicher Ausbildung von $\{Fe^{III}(NCFe^{II} \cdots)_{6-y}, (OH_2)_y\}$ -Einheiten $(y \ge 1)$ neben den streng oktaedrischen $\{Fe^{III}(NCFe^{II} \cdots)_{6}\}$ -

^{*} Herrn Prof. Dr. E. Weiss zum 65. Geburtstag gewidmet.

Fragmenten zustande. An die koordinierten H₂O-Liganden sind (c) über Wasserstoffbrückenbindungen stets weitere, sog. zeolithische H₂O-Moleküle angelagert. (d) Diese wiederum vermögen—vergleichsweise schwache—H-Brücken zu benachbarten Cyanid-N-Atomen auszubilden. Wir beschreiben hier das neue Sn-organische Koordinationspolymer $[(Me_3Sn^{IV})_4Fe^{II}(CN)_6\cdot 4H_2O]_{\infty}$ (2), das—abgesehen von seiner nicht-kubischen Struktur und dem Ersatz aller Fe^{III}- durch Me₃Sn^{IV}-Bausteine (mit jeweils noch zwei freien Koordinationsstellen)—mehrere interessante Parallelen zum Aufbau von 1 zeigt.

Darstellung und Struktur von $[(Me_3Sn)_4Fe(CN)_6 \cdot 4H_2O]_{\infty}$ (2)

Wohlausgebildete Kristalle von 2 wachsen innerhalb von vier Tagen aus wäßrigen $Me_3SnCl/K_4[Fe(CN)_6]$ -Lösungen (Molverhältnis 4:1) in Gegenwart von Glucosaminhydrochlorid, welches wohl ähnlich wie Dioxan bzw. verschiedene Monosaccharide die anderenfalls spontane Ausfällung des praktisch H₂O-freien Polymers $[(Mc_3Sn)_4Fc(CN)_6]_{\infty}$ (2') [3] wirksam inhibiert [4]. Die Röntgenstrukturanalyse eines noch von Mutterlauge benetzten, farblosen Einkristalls belegt eindeutig die Zusammensetzung: $2 = 2' \cdot 4H_2O$ (vgl. Fig. 1), während die Elementaranalyse selbst einer sehr vorsichtig getrockneten polykristallinen Probe eher für die Bildung der wasserärmeren Spezies: $2' \cdot 2H_2O$ spricht (vgl. Experimenteller Teil). Die Festkörper-NMR-Spektren (CP-MAS von ¹³C und ¹¹⁹Sn) dieser wohl partiell

Fig. 1. SCHAKAL [16] Zeichnung mit Atomnumerierung von 2. Einige der insgesamt möglichen Wasserstoffbrückenbindungen sind gestrichelt angedeutet und sämtliche CH₃-Gruppen weggelassen worden.

Kette A		Kette B		Ketten A/A bzw.	Ketten A/B^{a}
Fe-C1	1.886(6)	Fe-C2	1.898(4)	01 · · · N1	2.972(8)
C1-N1	1.159(9)	C2-N2	1.160(6)	$O2 \cdots N2$	3.052(8)
N1-Sn1	2.281(7)	N2-Sn2	2.320(4)	$N1 \cdots H2$	2.050(8)
Sn1-O1	2.350(7)				
01 · · · 02	2.628(11)				
$O2 \cdots H1$	1.710(11) a				
Sn1-C3	2.127(9)	Sn2-C5/C5'	2.125(8)		
Sn1-C4/C4'	2.110(9)	Sn2-C6	2.097(11)		
Fe-C1-N1	177.2(6)	Fe-C2-N2	178.1(5)	02-01 · · · N1	120.0(4)
C1-N1-Sn1	141.7(6)	C2-N2-Sn2	155.4(5)	01-02 · · · N2	134.7(2)
N1-Sn1-O1	178.9(3)	N2-Sn2-N2	178.7(2)		
Sn1-O1-O2	120.5(4)				
C3-Sn1-C4	118.2(2)				
O1-Sn1-C3	87.6(3)	C6-Sn2-C5	119.4(3)		
01-Sn1-C4	86.7(3)	C5-Sn2-N2	91.5(2)		
C3-Sn1-N1	91.3(3)	C6-Sn2-N2	89.4(1)		
C4-Sn1-N1	93.8(3)	C2-Fe-C1	88.7(2)		
H1-O1-Sn1	133.6(8) ^a	C2-Fe-C2	89.4(2)		
H2-O1-Sn1	121.9(8) a				

Ausgewählte Bindungsabstände (Å) und Winkel (°) mit Standardabweichungen von 2

Tabelle 1

^a Fixierte Werte: O1-H1: 0.96; O1-H2: 0.96 Å; H1-O1-H2: 104.5°

entwässerten Probe [5] entsprachen weder den bekannten Spektren von 2' noch den auf Grund der Struktur von 2 zu erwartenden Resonanzmustern.

Das Gitter von 2 läßt sich als ein dreidimensionales Netzwerk aus zwei jeweils nichtlinearen Ketten A und B (vgl. Fig. 1 und Tab. 1) beschreiben:

Kette **B**: $(-Fe-C2-N2-Sn2-N2-C2)_{\infty}$

Die Überzahl der Lewis-aciden Koordinationsstellen auf den jeweils fünffach koordinierten Sn-Atomen über die Gesamtzahl der Cyanid-N-Atome wird wie in 1 durch H_2O -Liganden kompensiert, so daß das Polymergerüst von 2 neben streng trigonal bipyramidal (tbp) konfigurierten { $Me_3Sn(NCFe\cdots)_2$ }-Einheiten zu einem Drittel auch weniger symmetrische { $Me_3Sn(NCFe\cdots)(OH_2)$ }-Bausteine enthält. An jeden Sn-koordinierten H_2O -Liganden ist über eine relativ kurze [6] O1-H1 ··· O2-Wasserstoffbrücke (O1 ··· O2: 2.628(11); O2 ··· H1: 1.710(11) Å, vgl. Tabelle 1) ein weiteres, zeolithisches H_2O -Molekül angelagert.

Das bereits beschriebene [4] Koordinationspolymer $[(Me_3Sn)_4Fe(CN)_6 \cdot 2H_2O \cdot C_4H_8O_2]_{\infty}$ (3) kann als ein Derivat von 2 aufgefaßt werden, in dem die zeolithischen H₂O-Moleküle paarweise durch je ein verbrückendes Dioxan-Molekül ersetzt sind:

$$+$$
 Sn $-$ O $-$ H \cdots O(C₄H₈)O \cdots H $-$ O $-$ Sn $-$ N $-$ C $-$ Fe $-$ C $-$ N $+_{\infty}$

Die systematische Wiederkehr auffällig kurzer O \cdots N-Abstände zwischen den O-Atomen von Kette A und bestimmten N-Atomen aus jeweils benachbarten Strängen vom Typ A bzw. B (d.h. O1 \cdots N1': 2.972(8) und O2 \cdots N2': 3.052(8) Å) läßt vermuten, daß im Gitter von 2 eine recht enge Vernetzung der Ketten über O-H \cdots N-Wasserstoffbrückenbindungen zustande kommt. Die Lagen der zwei direkt lokalisierbaren H-Atome H1 und H2 lassen keinen Zweifel am Vorliegen der H-Brückenbindungen: O1-H1 \cdots O2 und O1-H2 \cdots N1'. Angesichts der gefundenen Strukturparameter sollte *jedes* N-Atom von 2 in eine diskrete O-H \cdots N-Wasserstoffbrückenbindung einbezogen sein.

Diskussion

Wasserstoffbrückenbindungen zwischen H₂O-Molekülen und den N-Atomen von CN-Gruppen, die wie in **2** ihrerseits zwei Metallatome verbrücken (a), sind unseres Wissen bislang noch kaum diskutiert worden [1,2]. Allerdings belegen Röntgen- und Neutronenbeugungsmessungen [7], daß ein Drittel aller N-Atome des Polymers $[H_4Fe(CN)_6]_{\infty}$ tatsächlich zwei H-Brücken zu benachbarten Cyanid-N-Atomen

ausbildet (b). Im ebenfalls polymeren Bis(trimethylzinn)cyanamid [8]—und möglicherweise auch in den wasserfreien Polymeren: $[(Me_3Sn)_4M(CN)_6]$ (M = Fe, Ru, Os [5])—beteiligt sich ein N-Atom sogar an zwei N ··· Sn ··· N-Brückenbindungen (c).

Tabelle 2 enthält die $O \cdots O$ - und $O \cdots N$ -Abstände von 2 und 3 zusammen mit einigen Vergleichsdaten von strukturell näher untersuchten Berlinerblau-Derivaten.

Tabelle 2

Experimentelle $O \cdots O$ - und $O \cdots N$ -Abstände für tatsächliche bzw. vermutete Wasserstoffbrückenbindungen in einigen polymeren Metallcyaniden

	1 [1b,c]	2 "	3 [5]	4 [2c]	5 [2b]	6 [2a]	7 [2b]
00	2.87	2.628	2779 ^b	3.00	2.75	2.734	2.77
(< 3.1 Å)				3.08	3.03	2.796	
0 · · · N ^c	2.809	2.972	3.122	3.039	2.736	2.814	3.032
(< 3.4 Å)	2.849	3.052		3.099	3.037		3.334

^a Diese Arbeit. ^b Zwischen O(Wasser) und O(Dioxan). ^c Nur O-Atome von "zeolithischen" H_2O -Molekülen (Ausnahme: Verb. 3).

1: $\operatorname{Fe}_{4}^{III} \{\operatorname{Fe}_{4}^{II}(\operatorname{CN}_{6})_{3} \cdot xH_{2}O; 2: (\operatorname{Me}_{3}\operatorname{Sn}^{IV})_{4}\operatorname{Fe}_{4}^{II}(\operatorname{CN})_{6} \cdot 4H_{2}O; 3: (\operatorname{Me}_{3}\operatorname{Sn}^{IV})_{4}\operatorname{Fe}_{4}^{II}(\operatorname{CN})_{6} \cdot 2H_{2}O \cdot C_{4}H_{8}O_{2}; 4: \operatorname{Zn}_{3}^{II} \{\operatorname{Co}_{11}(\operatorname{CN})_{6}\}_{2} \cdot 12H_{2}O; 5: \operatorname{Mn}_{3}^{II} \{\operatorname{Co}_{11}(\operatorname{CN})_{6}\}_{2} \cdot 12H_{2}O; 6: \operatorname{Mn}_{2}^{II} \{\operatorname{Ru}_{4}^{II}(\operatorname{CN})_{6}\}_{8} \cdot 8H_{2}O; 7: \operatorname{Cd}_{3}^{II} \{\operatorname{Co}_{11}(\operatorname{CN})_{6}\}_{2} \cdot 12H_{2}O.$

Während sich der $O1 \cdots O2$ -Abstand von 2 deutlich als besonders kurz erweist, sind die $d(0 \cdots N)$ -Werte von 2 eher mit den längeren $0 \cdots N$ -Abständen der Vergleichssysteme von Tabelle 2 korrelierbar. $O-H \cdots N$ -Brückenbindungen $(0 \cdots N: 2.82 - 3.17 \text{ Å})$ bewirken auch eine enge Vernetzung von benachbarten "TCP-Säulen" im Gitter der bekannten Verbindung K_{1.75}[Pt(CN)₄] · 1.5H₂O [13]. Nicht auszuschließen ist daher auch, daß zwei der sechs Cyanid-N-Atome des Koordinationspolymers 3 in $O-H \cdots N$ -Brückenbindungen mit einbezogen sind.

Angesichts der durch Einkristall-Röntgenstrukturanalysen abgesicherten Existenz echter "Wirt-Gast-Systeme" vom Typ: [G⁺(Me₃Sn)₃M(CN)₆]_∞ (Gastkation G⁺ $= \frac{1}{2} \{ Methylviologen^{2+} \}, M = Ru [9] bzw. G^+ = \{ (C_5H_5)_2Co \}^+, M = Fe [10] \}$ ware für die Struktur von 2 grundsätzlich auch die Alternative eines "Wirt-Gast-Systems" mit $G^+ = [Me_3Sn(OH_2 \cdot OH_2)_2]^+$ denkbar. Obwohl stabile Salze zumindest von $[R_3Sn(OH_2)_2]^+$ -Kationen bekannt sind [11], fanden wir kürzlich, daß auch das gegenüber 2 H₂O-ärmere Koordinationspolymer $[(Me_3Pb)_4Ru(CN)_6 \cdot 2H_2O]_{\infty}$ nicht als ein "Wirt-Gast-System" aufzufassen ist, sondern ähnlich wie 2 wieder ein 3D-Netzwerk ausbildet, in dem vier der sechs Cyanid-N-Atome in $O-H \cdots N$ -Wasserstoffbrückenbindungen mit $d(O \cdots N) \approx 3$ Å einbezogen sind [12].

Experimentelles

Darstellung von 2

Eine Lösung von 3.0 g α -D-(+)-Glucosaminhydrochlorid und 0.27 g (0.63 mmol) K_{A} [Fe(CN)₄] in 30 ml H₂O wurde unter Rühren tropfenweise mit einer Lösung von 2.0 g α -D-(+)-Glucosaminhydrochlorid und 0.5 g (2.5 mmol) Me₃SnCl in 20 ml H₂O vereinigt. Nach 3- bis 4-tägigem Stehen bei 4°C waren 0.48 g an wohlausgebildeten, farblosen Kristallen ausgefallen (Rohausbeute: 81% bez. auf K₄[Fe(CN)₆]). Proben für Elementaranalysen und spektroskopische Untersuchungen wurden mehrmals mit kalten H₂O gewaschen und mehrere Stunden lang bei Raumtemperatur getrocknet.

Atom	x	у	Z	$U_{\rm eq}$
Fe	0.00000(0)	0.00000(0)	0.50000(0)	0.0227(8)
C1	0.00000(0)	0.0879(3)	0.4180(5)	0.032(5)
N1	0.00000(0)	0.1403(4)	0.3634(6)	0.055(7)
C2	0.0791(2)	-0.0343(3)	0.3987(4)	0.031(3)
N2	0.1267(3)	-0.0539(3)	0.3345(4)	0.050(4)
Sn1	0.00000(0)	0.17971(3)	0.17692(4)	0.0471(6)
C3	0.00000(0)	0.0719(5)	0.1141(9)	0.079(13)
C4	0.1085(5)	0.2333(4)	0.1931(9)	0.078(9)
01	0.00000(0)	0.2180(4)	-0.0165(6)	0.11(2)
Sn2	0.25000(0)	-0.05530(3)	0.25000(0)	0.0369(5)
C5	0.2066(5)	-0.1116(6)	0.1035(8)	0.085(10)
C6	0.25000(0)	0.0578(6)	0.25000(0)	0.09(2)
02	0.00000(0)	0.1233(5)	-0.1853(7)	0.069(8)
H1	0.00000(0)	0.193(7)	-0.089(6)	0.10(5)
H2	0.00000(0)	0.268(2)	-0.037(12)	0.17(9)
H3	-0.04480(0)	0.10440(0)	-0.22630(0)	0.9(2)

Tabelle 3

Atomkoordinaten von 2

Elementaranalysen

Gef.: C, 23.94; H, 4.33; N, 9.32; Fe, 6.26; Sn, 52.73. $2/2' \cdot 2H_2O$ ber.: C, 23.02/23.94; H, 4.72/4.46; N, 8.95/9.31; Fe, 5.95/6.18; Sn, 50.55/52.57%. ν (CN): IR, 2075ss, 2051s; Raman, 2133s, 2091ss, 2067s. Verfärbung nach Braun ab 260°C.

Strukturdaten von 2 [14*]

Kristallgröße ca. $0.3 \times 0.5 \times 0.4$ mm. Syntex $P2_1$ -Vierkreisdiffraktometer, Mo- K_{α} -Strahlung ($\lambda = 0.71069$ Å), 22°C, $\delta_{ber} = 1.70$ g·cm⁻³. Orthorhombische Kristalle, Raumgruppe *Cmca*; a 17.064(2), b 18.534(2), c = 11.586(1) Å; V = 3664(1) Å³, Z = 4, lin. Absorptionskoeff, $\mu = 29$ cm⁻¹. $\theta/2\theta$ -Scan ($5 \le 2\theta \le 60^{\circ}$); aus insgesamt 3750 Reflexen 2255 unabhängige, signifikante mit $|F| > 4\sigma$. Lösung mittels Patterson-Synthese (Programmsystem SHELXS), Lokalisierung der H-Atome von O1 mittels Differenz-Fourier-Synthese, Atomkoordinaten in Tabelle 3. Empirische Absorptionskorrektur (Programm DIFABS [15]); R = 0.054 ($R_w = 0.059$; Gewichtung $w = (\sigma_F^2 + 0.0006 \cdot F^{-2})^{-1}$.

Dank

Die Autoren danken der Deutschen Forschungsgemeinschaft, Bonn und dem Fonds der Chemischen Industrie, Frankfurt/Main für finanzielle Unterstützung.

Literatur und Bemerkungen

- (a) A. Ludi, Chem. Unserer Zeit, 22 (1988) 123; (b) H.J. Buser, A. Ludi, W. Petter und D. Schwarzenbach, Inorg. Chem., 16 (1977) 2704; (c) F. Herren, P. Fischer, A. Ludi und W. Hälg, ibid., 19 (1980) 956.
- 2 (a) M. Rüeg, A. Ludi und K. Rieder, Inorg. Chem., 10 (1971) 1773; (b) G.W. Beall, W.O. Milligan, J. Korp und I. Bernal, ibid., 16 (1977) 2715; (c) D.F. Mullica, W.O. Milligan, G.W. Beall und W.L. Reeves, Acta Crystallogr., Sect. B, 34 (1978) 3558.
- 3 Vgl.: S. Eller, P. Brandt, A.K. Brimah, P. Schwarz und R.D. Fischer, Angew. Chem., 101 (1989) 1274; Angew. Chem., Int. Ed. Engl., 28 (1989) 1263.
- 4 Vgl.: M. Adam, A.K. Brimah, X.-F. Li und R.D. Fischer, Inorg. Chem., 29 (1990) 1595.
- 5 Vgl.: D.C. Apperley, N.A. Davies, R.K. Harris, A.K. Brimah, S. Eller und R.D. Fischer, Organometallics, 9 (1990) 2672.
- 6 Vgl. hierzu: I.B. Brown, Acta Crystallogr., Sect. A, 32 (1976) 24.
- 7 M. Pierrot und R. Kern, Acta Crystallogr., Sect. B, 25 (1969) 1685.
- 8 R.A. Forder and G.M. Sheldrick, J. Chem. Soc., Chem. Commun., (1970) 1023.
- 9 S. Eller, M. Adam und R.D. Fischer, Angew. Chem., 102 (1990) 1157; Angew. Chem., Int. Ed. Engl., 29 (1990) 1126.
- 10 P. Schwarz, A.K. Brimah und R.D. Fischer, noch unveröffentlichte Ergebnisse.
- 11 (a) M. Wada und R. Okawara, J. Organomet. Chem., 4 (1965) 487; (b) A.G. Davies, J.P. Goddard, M.B. Hursthouse und N.P.C. Walker, J. Chem. Soc., Chem. Commun., (1983) 597.
- 12 U. Behrens, A.K. Brimah, T. Soliman und R.D. Fischer, noch unveröffentlichte Ergebnisse.
- 13 A.H. Reis Jr., S.W. Peterson, D.M. Washecheck und J.S. Miller, Inorg. Chem., 15 (1976) 2455.
- 14 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54582, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- 15 N. Walker und S. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
- 16 E. Keller, SCHAKAL, A FORTRAN Program for the Graphic Representation of Molecules and Crystallographic Models. Universität Freiburg, Freiburg/Br, 1986.

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.